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Let’s go to the next level[image: ]

Now that your programs can keep going with a loop, and you can control input with the buttons, it is time to handle more data. 

Have you seen wearable devices – things like hats, belts or shirts that display a message or image? You can create one with CodeX!

Go to the Mission 7 Log and fill out the Pre-Mission preparation.
· If you could show what you like or your mood by displaying something, what would you display? (example: a color, an image, a slogan, etc.)
· What type of clothing would you display your message on?  




Mission 7: Personal Billboard
In this project you'll use the CodeX display and buttons to make a billboard that shows others how you're feeling, a fun picture, or a short message.[image: ]
On battery power, you could make the CodeX into a wearable electronic badge or a portable sign for a wall or desk!




Mission 7: Get started
· Go to https://make.firialabs.com/ and log in. 
[image: ]
· Go to Mission 7 
[image: ]
·  Click  and start Mission 7.


Objective #1: Image selector
The CodeX has several built-in images. You have used them since Mission 2. You learned about using buttons for input in Mission 6. 
· Start this project by writing code that will:
· Display the HAPPY face when BTN_L is pressed
· Display the SAD face when BTN_R is pressed
[image: ][image: ]




DO THIS:[image: ]
· Start a new file named Billboard
· Import codex
· Use a while True: loop
· Show pics.HAPPY if BTN_L was pressed
· Show pics.SAD if BTN_R was pressed
· Use CodeTrek if you need help 
[image: ]


Objective #2: Select more images
You will use the CodeX to display your mood, so you need more than two pictures!
· You will still use the LEFT and RIGHT buttons to scroll through the pictures
· So you need some way to keep track of which picture to display
· You will use the variable choice to keep track of which image to display, and update choice with the buttons

[image: ]
You can use a number to keep track of the images like this:
A number like this is called an index. It is like using your finger to point to the image!






Objective #2: Select more images[image: ]
To compare a number to a specific value, use ==
· choice == 1
Use this comparison in an if statement to display an image
· Use an if statement for each picture
· You will have 4 additional 
if statements
· Use HAPPY, SAD, and two 
more pictures


Built-in images you can use:[image: ]


Objective #2: Select more images
[image: ]DO THIS:
· Go to your Mission Log and answer the 
	questions about index and comparison 
	operators
· Define the variable choice and assign it the value 0
· Write an if statement to display HAPPY 
(if choice == 0:)
· Write an if statement to display SAD 
(if choice == 1:)
· Write an if statement to display another pic 
(if choice == 2:)
· Write an if statement to display another pic 
(if choice == 3:)
· Change the if buttons.was_pressed(BTN_R) code to increment choice (choice = choice + 1)
Try to do the code on your own, and then check your work with the next page.




[image: ]Objective #2: Select more images
[image: ]






Objective #3:  Scroll both directions
In Mission 6, you learned about increment and decrement
· Increment: 
· Increase the value of a variable by a set amount
· Example: num = num + 1
· Decrement:
· Decrease the value of a variable by a set amount
· Example: num = num - 1

You will change the code for BTN_L to decrement choice so you can scroll the opposite way.
[image: ]
Another awesome feature of the debugger is that you can watch your variables and track their values while the code is running. 
· Start the debugger
[image: ]
· Open the console panel



· Watch the variables as you step through the code
[image: ][image: ]



Objective #3:  Scroll both directions[image: ]
DO THIS:
· Go to your Mission Log and review 
	“increment” and “decrement” from Mission 6
· Change the code for BTN_L to decrement choice by 1
· Start the debugger
· Open the console panel
· Use the Step In button to run the code. 
· Click several times, and then press BTN_R. Check the value 
of choice.[image: ]
· Click several more times, and then press either BTN_R or 
BTN_L. Check the value of choice.[image: ]
· Continue as long as you want, until you understand the code.[image: ]
· Then STOP the code.


[image: ]
Mission Quiz: Billboard checkpoint
Test your skills by taking the quiz.

Objective #4: Wrap around
You probably noticed that if you keep pressing BTN_R, it stops at the last image. 
· The value of choice keeps increasing, but the image stays the same. 
· Also, pressing BTN_L many times keeps the first image on the screen.
· The value of choice decreases, but the image stays the same. 
· There are no if statements for choice == 4 or choice == -1
· So the last image displayed remains on the screen
[image: ]
Can you improve the program and avoid this problem?
Objective #4: Wrap around
Instead of adding more images or if statements, make the value of choice wrap-around to the first value. [image: ]
· Use an if statement to know when to wrap around.
· Use a comparison operator.
You can have an if statement inside an if statement -- just be careful with the indenting
[image: ]The second if statement causes the value of choice to wrap-around, and start over.
· The last index is 3
· The first index is 0
What will the if statement look like to wrap-around BTN_L?
· [image: ]The value of choice will need to be the LAST index if less than 0.


Objective #4: Wrap around
DO THIS:[image: ]
· Go to your Mission Log and write down what you think the code should look like to wrap-around the value of choice in BTN_L
· Indent the heartbeat code
Modify your code
· Add an if statement to BTN_R so the value of choice wraps around[image: ]
· Add an if statement to BTN_L so the value of choice wraps around
· Test your code
· Then stop the code


Objective #5: Image list
Four pictures are nice, but what if you want to add more?
That is a lot of typing!
· Every new image needs an if statement
· [image: ]Your code can get very long very quickly!
Instead, you can make a list!



[image: ]
DO THIS:
· [image: ]Click on          in the instructions panel
· Go to your Mission Log and answer the questions about list





Objective #5: Image list[image: ]
· A list is a type! 
· Now you know six data types:
· Integer
· CodeX image
· String
· Boolean
· Float
· List


	A note about a list and the index of each item
[image: ]
· The order of the items in the list is important
· Each item has an index (number) assigned
· The first index is always 0
· The last index is always 1 less than the number of items


Objective #5: Image list
Things you can do with a list:
· Create a list (use [ ])
my_list = [pics.HAPPY, pics.SAD, pics.SURPRISED, pics.ASLEEP, pics.TIARA]
· [image: ]Access an item in the list (use [ ])
my_image = my_list[1]
my_image = pics.SAD
my_image = my_list[choice]
my_image = whatever image 
                   is at the current 
                   value of choice



Objective #5: Image list[image: ]
DO THIS:
· Add a list to your code
· Use the same four images
· Change the code to access the list
· Add two lines of code to access the list using choice for the index
· Delete the four if statements that displayed the images 
Leave the if statements for BTN_L and BTN_R[image: ]

Objective #6: No magic numbers
· With four images in your list, the index numbers are 
· 0, 1, 2, 3
· You use these numbers for wrap-around[image: ]
· If you added another image, the last index would be 4, not 3.
· You would have to change 3 to 4 everywhere in the code!
· These literals are called “magic numbers”

· Magic numbers make the code harder to maintain, and harder to read and understand. The magic number in this program is the last index of the list 
[image: ]So …
Use a built-in function! 
This code will give the length of the list, which is the number of items in the list. 
· [image: ]Remember: the last index is always one less than the number of items 


Objective #6: No magic numbers[image: ]
Now you can add more images
DO THIS:
· Add another image to your list 
· A list of images is on slide 9[image: ]
· Create a variable for LAST_INDEX



· Use the LAST_INDEX variable in the code:
[image: ]








[image: ]Mission Quiz: List len
Test your skills by taking the quiz.

Objective #7: Text time!
Images are expressive … but text can say so much more!
· You can use a string variable to create a message or slogan
· Remember: a string data type uses quotation marks: “..” 
· my_message = “Meh”
· my_message = “Having a great day”
· You also include a string message in your list
· display.show(my_message) will display the text string
[image: ]
[image: ]
DO THIS:
· [image: ]Add a text string to your list
· OPTIONAL: Your list can look like this to make it easier to read.
Objective #8: Green with envy
What if you're neither HAPPY nor SAD?  ...and text just isn't describing you?
· Sometimes you just need a color.
· Maybe you are GREEN with envy!
· Wouldn't it be cool to fill the display with a color?
· [image: ]Try it out!


DO THIS:
· [image: ]Add GREEN to the list
· Run the program
· Get an error?
· [image: ]Find out why in the next objective



[image: ]

Objective #9: Fill ‘er up
GREEN isn’t an image or a string. What type is it?
· Colors in the codex library are actually tuples!
· A tuple is like a list that can't be changed.
· CodeX color tuples have three integer values: 
(red, green, blue)
· You learned about RGB values in Mission 3
· What do you think the tuple for GREEN is?
[image: ]
DO THIS:
· Go to the Mission Log and write your guess for the RGB tuple of GREEN


Objective #9: Fill ‘er up
display.show() doesn’t work with colors, but display.fill() does!
· You just have to know when to use display.show() and when to use display.fill()
· You need to check for the type
· You can use the console panel to help you
[image: ]
DO THIS:
· [image: ]Open the console panel. You can type commands directly into the console.



· Check the type of several values:
· [image: ]type(7)  -> ‘int’
· type(1.15)
· type(True)
· type([1, 2, 3])
· The type is shown like this:
· Now get the type of a color
· type((0, 255, 0))
Objective #9: Fill ‘er up[image: ]
· The type of a color is ‘tuple’
· You can use this information in your code
· If the type is ‘tuple’, 
    use display.fill() 
else 
    use display.show()
[image: ]
DO THIS:
· Add an if statement to the code that compares the current my_image to a tuple. 
· If it is, use display.fill()
· Else use display.show()
· Run the code. You should get colors, text and images!
[image: ]


Objective #9: Fill ‘er up[image: ]
DO THIS:
· Add more colors, text or images to your list.
· Run the code. 
· No matter how many items you have, the code should work without making any other changes.
· Pretty cool, Right!
· Now you can display your mood by stopping on the color, text, or image that represents you.
[image: ]


Mission Complete

You have completed the seventh mission. [image: ]
Do this:
· Read your “Completed Mission” message
· Complete your Mission 7 Log
· Post-Mission Reflection
· Get ready for your next mission!




Wait! Before you go … Clear the CodeX
Go to FILE -- BROWSE FILES 
Select the “Clear” file and open it
Run the program to clear the CodeX
Okay. Now you can go.
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